KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR

M.Sc. MICROBIOLOGY

SYLLABUS

W.E.F. JULY 2017

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology **Course Structure for M.Sc. Microbiology Programme**

a	D		r	ESTER-1	-	2.61.2		
Sem.	Paper	Title	Hours/	Credits	Exam	Mid	External	Total
			week		hours	Term	marks	marks
						marks		
1	MBCT	Cellular	4	4	3	Max.:30	Max.:70	100
	101	Metabolism and				Min: 12	Min: 28	
		Enzymology						
1	MBCT	Analytical	4	4	3	Max.:30	Max.:70	100
	102	Microbiology				Min: 12	Min: 28	
		and						
		Instrumentation						
1	MBCT	Microbial	4	4	3	Max.:30	Max.:70	100
	103	Genetics				Min: 12	Min: 28	
1	MBCT	Microbial	4	4	3	Max.:30	Max.:70	100
	104	Physiology and				Min: 12	Min: 28	
		Cell Biology						
1	MBCP	Practicals related	8	8	12		Max.:	Max.:
	105	to theory papers					200	200
		in the semester					Min: 80	Min:80
		Total credits		24				

SEMESTER-1

SEMESTER-2

Sam	Donor	Title		Credits		Mid	External	Total
Sem.	Paper	The	Hours	Creans				
			/ week		hours	Term	marks	marks
						marks		
2	MBCT	Microbial	4	4	3	Max.:30	Max.:70	100
	201	Diversity				Min: 12	Min: 28	
2	MBCT	Bioprocess	4	4	3	Max.:30	Max.:70	100
	202	Technology				Min: 12	Min: 28	
2	MBCT	Recombinant	4	4	3	Max.:30	Max.:70	100
	203	DNA				Min: 12	Min: 28	
		Technology						
2	MBCT	Research	4	4	3	Max.:30	Max.:70	100
	204	Methodology				Min: 12	Min: 28	
		and Technical						
		Writing in						
		Microbiology						
2	MBCP	Practicals related	8	8	12		Max.: 200	Max.: 200
	205	to core theory					Min: 80	Min: 80
		papers in the						
		semester						
		Total credits		24				

Sem.	Paper	Title	Hours/	Credits	Exam	Mid	External	Total
			week		hours	Term	marks	marks
						marks		
3	MBCT	Immunology and	4	4	3	Max.:30	Max.:70	100
	301	Immunotechnology				Min: 12	Min: 28	
3	MBCT	Environmental	4	4	3	Max.:30	Max.:70	100
	302	Microbiology				Min: 12	Min: 28	
3	MBCT	Industrial	4	4	3	Max.:30	Max.:70	100
	303	Microbiology				Min: 12	Min: 28	
3	MBCT	Pharmaceutical	4	4	3	Max.:30	Max.:70	100
	304	Technology				Min: 12	Min: 28	
3	MBCP	Practicals related	16	8	12		Max.:	Max.:200
	305	to theory papers in					200	Min:80
		the semester					Min: 80	
3	MBET	Elements of	2	2	2	Max.:15	Max.:35	50
	306A	Biostatistics				Min: 6	Min: 14	
3	MBET	Genomics	2	2	2	Max.:15	Max.:35	50
	306B					Min: 6	Min: 14	
		Total credits		26				650

SEMESTER-4

Sem.	Paper	Title	Hours/	Credits	Exam	Mid Terr	External	Total
~			week		hours	marks	marks	marks
4	MBCT	Food and Dairy	4	4	3	Max.:30	Max.:70	100
	401	Microbiology				Min: 12	Min: 28	
4	MBCT	Medical	4	4	3	Max.:30	Max.:70	100
	402	Microbiology				Min: 12	Min: 28	
4	MBCP	Practical's	8	4	12		Max.:	Max.:100
	403	related to core					100	Min:40
		theory papers in					Min: 40	
		the semester						
4	MBDI-	Dissertation/	-	12	-	-	Max.:300	Max.300
	404	Industrial					Min: 120	Min: 120
		Training						
4	MBET –	Bioinformatics	2	2	2	Max.:15	Max.:35	50
	405A					Min: 6	Min: 14	
4	MBET –	Proteomics	2	2	2	Max.:15	Max.:35	50
	405B					Min: 6	Min: 14	
		Total credits		26				650

% - Weightage of marks in percentage, Hrs- Number of teaching hours per week. MBCT- Microbiology Core Theory, MBCP- Microbiology Core Practical, MBET- Microbiology Elective Theory, MBDI – Microbiology Dissertation/ Microbiology Industrial Training.

General instructions:

- 1. The medium of instruction will be English for theory and practical courses.
- 2. There will be 4 lectures each of 55 mins duration / week / theory paper / semester.
- 3. There will be "*four*" units in each core theory paper. There will be 48 hrs. of theory teaching/ paper/ semester. Each theory paper / semester will be of 100 marks. There will be 30 marks for midterm evaluation and 70 marks for external evaluation.
- 4. There will be "*two*" units in each elective theory paper. There will be 24 hrs. of theory teaching/ paper / semester. Each theory paper / semester will be of 50 marks. There will be 15 marks for midterm evaluation and 35 marks for external evaluation.
- 5. In I, II and III semesters there will be 16 practical hours/ week / paper / batch. Each practical paper/ semester will be of 200 marks. There is no Mid Term Evaluation for practical work.
- 6. In semester 4, there will be 8 practical hours/ week / paper / batch. Each practical paper/ semester will be of 100 marks. There is no midterm evaluation for practical work.
- 7. Dissertation and Industrial Training in semester 4 shall be evaluated for 300 marks. Work carried out and written report carry 200 marks, presentation carry 100 marks.

Section A	Questions from each Unit	Questions to be answered	Marks
Unit 1	Five MCQ,	MCQ-5	35 Marks
	Two 5M questions,	5M questions -1	
	Four 3M questions	3M questions – 4	
Unit 2	Five MCQ,	MCQ-5	
	Two 5M questions,	5M questions -1	
	Four 3M questions	3M questions –(Minimum-1 & Maximum-4	
Section B	Questions from each Unit	Questions to be answered	Marks
Unit 3	Five MCQ,	MCQ-5	35 Marks
	Two 5M questions,	5M questions -1	
	Four 3M questions	3M questions –(Minimum-1 & Maximum-4	
Unit 4	Five MCQ,	MCQ-5	
	Two 5M questions,	5M questions -1	
	Four 3M questions	3M questions –(Minimum-1 & Maximum-	
		43M questions –4	
		Total	70 Marks

Unit wise marks distribution and the question paper scheme of End Term Core Theory Papers

Unit wise marks distribution and the question paper scheme for End Term Elective Theory Paper

Section A	Questions from each Unit	Questions to be answered	Marks
Unit 1	Five MCQ,	MCQ-5	
	Two 5M questions,	5M questions -1	
	Four 3M questions	3M questions –(Minimum-1 & Maximum-4	
Unit 2	Five MCQ,	MCQ-5	
	Two 5M questions,	5M questions -1	
	Four 3M questions	3M questions –(Minimum-1 & Maximum-4	
		Total	35 Marks

M.Sc. Microbiology Course Description:

This course is designed to enable students to acquire understanding of fundamentals of Microbiology and applications of various Microbiological resources and techniques. It also provides opportunities for utilizing Microbial products for the benefit of mankind. The course also provides practical training on Microbiological resources, techniques and processes for creation of trained manpower for adsorption in upcoming Microbiology based Industries.

Paper	Title of Paper	Credits
Core	SEMESTER-1	
MBCT 101	Cellular Metabolism and Enzymology	4
MBCT 102	Analytical Microbiology and Instrumentation	4
MBCT 103	Microbial Genetics	4
MBCT 104	Microbial Physiology and Cell Biology	4
MBCP 105	Practicals related to theory papers in the semester	8
Core	SEMESTER-2	
MBCT 201	Microbial Diversity	4
MBCT 202	Bioprocess Technology	4
MBCT 203	Recombinant DNA Technology	4
MBCT 204	Research Methodology and Technical Writing in Microbiology	4
MBCP 205	Practicals related to core theory papers in the semester	8
Core	SEMESTER-3	
MBCT 301	Immunology and Immunotechnology	4
MBCT 302	Environmental Microbiology	4
MBCT 303	Industrial Microbiology	4
MBCT 304	Pharmaceutical Technology	4
MBCP 305	Practicals related to theory papers in the semester	8
Elective		
MBET 306A	Elements of Biostatistics	2
Or		
MBET 306B	Genomics	2
Core	SEMESTER-4	
MBCT 401	Food and Dairy Microbiology	4
MBCT 402	Medical Microbiology	4
MBCP 403	Practical's related to core theory papers in the semester	4
MBDI 404	Dissertation/ Industrial Training	12
Elective		
MBET 405A	Bioinformatics	2
Or		
MBET 405B	Proteomics	2
	Total Credits	100

MBCT- Microbiology Core Theory, MBCP- Microbiology Core Practical, MBDI – Microbiology Dissertation/ Microbiology Industrial Training, MBET – Microbiology Elective Theory.

MBCT101- Cellular Metabolism and Enzymology

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits		Total		
Code			Hrs.	S. Max Marks		Marks
				Mid Term	End Term	
MBCT	Cellular	4	48	30	70	100
101	Metabolism and					
	Enzymology					

Course Content

	Section A	
Unit 1	No. of Lectures: 12	Weightage: 25%
Carbohydrate	metabolism: Classification and biological importa	nce of Sugar. Aerobic and
anaerobic glyco	lytic pathways. TCA cycle and various fates of Glu	cose 6 Phosphate in a cell -
Gluconeogenesi	s, glycogen synthesis and breakdown. ATP Cycle	e, High energy compounds;
Electron transpo	ort chain order and organization of carriers, proton grad	lient, respiratory controls and
oxidative phosp	horylation, ATP- synthetase complex. ED and PPP pat	thways.
Nucleic acid m	etabolism: Brief overview of central dogma. Structur	re of nucleoside, nucleotides,

purines and pyrimidines. Biosynthesis and regulation of purines and pyrimidines. Structure and Function of Ribonucleotide reductase.

Unit 2

No. of Lectures: 12

Weightage: 25%

Lipid metabolism: Classification of lipids. α , β and δ oxidation of fatty acids, metabolism of fatty acids with even and odd carbon atoms, saturated and unsaturated fatty acids. Metabolism and synthesis of phospholipids, glycolipids and sphingolipids; Ketone bodies –formation and degradation, Mobilization of fats.

Protein and Amino acid metabolism: Proteins structure: Classification of amino acids; Primary, secondary, tertiary and quaternary structure of proteins. Properties of amino acids, Biosynthesis and degradation of amino acid. Urea cycle. Nitrogen balance, Regulation of amino acid metabolism in microbial system.

Unit 3

Section B No. of Lectures: 12

Weightage: 25%

Introduction to Enzymes, nomenclature and classification of enzymes. Enzymes as biocatalysts, catalytic power, activation energy, substrate specificity, active site, theories of mechanisms of enzyme action. Factors affecting enzyme activity and catalysis: pH, substrate and enzyme concentration, temperature, coenzyme and cofactors, Isolation & purification of enzymes. Methods of enzyme assay.

Enzyme Kinetics: Derivation of Michaelis - Menton equation and its significance in enzyme kinetic studies. Line weaver-Burke plot, Haldane-Briggs relationship, sigmoidal kinetics steady state kinetics and transient phases of enzyme reaction. Significance of Km, Vmax & Kcat. Introduction to allosteric enzymes and isozymes.

Unit 4No. of Lectures: 12Weightage: 25%Multi-enzyme system, Co-cooperativity. Types of Enzyme inhibitionand Mechanism ofregulation of enzymes.Enzyme Technology: Immobilization of enzymes and their application.

Reference	28:	
Sr. No.	Name of Book	Authors
1	Lehninger's Principles of Biochemistry	D. L. Nelson and M. M. Cox
2	Biochemistry	L. Stryer
3	Biochemistry	D. Voet and J. G. Voet.
4	Biochemistry: Chemical Reactions of the Living Cells	D. Metzerler
	(Vol. I & II)	
5	Biochemistry	Jain & Jain
6	Fundamentals of Enzymology	N.C. Price and L. Stevens
7	Enzyme Structure and Mechanism	A. Fersht
8	Understanding Enzymes	T. Palmer
9	Enzymology	T. Devsena

Semester -I
MBCT-102: Analytical Microbiology and Instrumentation
Evaluation Scheme:

Teaching and	Teaching and Evaluation Scheme:							
Subject	Subject Title	Credits		Theory				
Code			Hrs.	Hrs. Max Marks		Marks		
				Mid Term	End Term			
MBCT102	Analytical Microbiology	4	48	30	70	100		
	and Instrumentation							

Course Content

	Section A					
Unit 1No. of Lectures: 12Weightage: 2						
Use of analytical	Use of analytical microscopy in elucidating the structure-function relationship in microbes:					
Electron microsco	py, phase contrast and fluorescence mi	croscopy & scanning tunneling microscopy.				
Introduction to Os	smosis, diffusion, Fick's law of diffusion	on and Donnan Equilibrium.				
Centrifugation to	Centrifugation techniques: Principle of sedimentation, Sedimentation rate, types of centrifuges,					
Centrifugation te	chniques; Rate Zonal; Isopycnic; H	High speed; Ultra; preparative; Gradient				
Centrifugation.		_				

Unit 2No. of Lectures: 12Weightage: 25%Chromatographic techniques:Principle, methodology and applications of Paper, Thin layer gel –filtration, ion –exchange and affinity chromatography; and gas chromatography; High performanceliquid chromatography.

Electrophoresis: Principles, Factors affecting electrophoresis, types of Electrophoresis- Zone; Gel, Isoelectric; DISC; Immuno & Pulsed Field Gel Electrophoresis

	Section B	
Unit 3	No. of Lectures: 12	Weightage: 25%
Basic concepts of	Electromagnetic radiation - wave length, from	equency, wave number, velocity.
Properties of U.V	and IR rays, fluorescence, Phosphorescence.	Principles, instrumentation and
applications of Vis	sible, UV, IR, AAS.	

Unit 4No. of Lectures: 12Weightage: 25%Principles, instrumentation and applications of NMR, ESR, and Mass spectroscopy. Fluorescencespectroscopy, Raman spectroscopy, CD, ORD, Characterization of macromolecules using X-raydiffraction analysis.Principles and applications of Radio isotopes: Detection and measurement of radioactivity, GeigerMuller counters, Scintillation counting, Autoradiography and RIA; Applications of isotopes in

References:

biological studies.

Sr. No.	Name of Book	Authors
1	Principle and techniques of biochemistry &	Keith Wilson & John Walker
	molecular biology	
2	Instrumental methods of analysis	B. Sivasankar
3	Biophysical chemistry: Principle and techniques	Upadhyay & Nath
4	Instrumental methods of analysis	Willard, Merritt, Dean & Settle

5	Instrumental analysis	D.A. Skoog, Holler & Crouch
6	Physical Biochemistry:	David Freifelder
7	Principle and techniques of biochemistry & molecular biology	Keith Wilson & John Walker
8	Instrumental methods of analysis	B. Sivasankar
9	Biophysical chemistry: Principle and techniques	Upadhyay & Nath

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester -I MBCT 103- Microbial Genetics

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits		Theory		
Code			Hrs. Max Marks		Marks	
				Mid Term	End Term	
MBCT 103	Microbial Genetics	4	48	30	70	100

Section A

Course Content

Unit 1No. of Lectures: 12Weightage: 25%Structure of DNA, Z-DNA, A & B DNA, Denaturation and melting curves. Genome organization in
prokaryotes and eukaryotes. Euchromatin, Heterochromatin, Karyotyping.
Bacterial Recombination types- Bacterial transformation- Competency and Horizontal gene transfer.
Bacterial conjugation – Sex factor in bacteria, F and HFR transfer. Bacterial transduction –
transduction phenomenon, methods of transduction, sexductions, generalized, specialized and
abortive transduction.Unit 2No. of Lectures: 12Weightage: 25%Replication - Detailed mechanism of Semiconservative replication. Requirements for Prokaryote
replication – Enzymes & Proteins, Okazaki Experiments. Replication – Initiation, elongation &

replication– Enzymes & Proteins, Okazaki Experiments. Replication – Initiation, elongation & Termination. Differences between prokaryote and eukaryote replications. Eukaryotic telomere and its replication. Theta replication, Sigma replication.

Section BUnit 3No. of Lectures: 12Weightage: 25%Genes, Promoters and enhancers. Prokaryote RNA polymerase and Mechanism of Transcription in
prokaryotes- Initiation, elongation & Termination. Differences between Prokaryote & Eukaryote
Transcriptions, splicing -types.Translation, Genetic code, Wobble's hypothesis, tRNA & ribosome, Mechanism of translation in
Prokaryotes & Differences between Prokaryote & Eukaryote
Translation Post- translational

Prokaryotes & Differences between Prokaryote & Eukaryote Translation, Post- translational modification of proteins.

Unit 4No. of Lectures: 12Weightage: 25%Positive and Negative regulation of gene expression, Coordinate Regulation of gene expression in
Prokaryotes - Operon concept-lac operon, trp operon. Regulation of gene expression: Operon
concept-lac operon – positive and negative regulation, trp operon- negative regulation & Attenuation.
Bacteriophages –General Properties, Life cycles of Lambda and M13 Phages.

References:

Sr. No.	Name of Book	Authors
1	Molecular Biology of Cell:	B. Alberts et. al.
2	Molecular Biology of the Gene	J. D. Watson <i>et. Al</i> .
3	Genes XI	B. Lewin
4	Instant notes on Molecular Biology- 4 Ed.	Turner
5	Principles of Genetics	Snustard
6	Fundamental Bacterial Genetics	Nancy Trun & Janie Trempy

Semester -I MBCT 104- Microbial Physiology and Cell Biology

Teaching and Evaluation Scheme:								
Subject	Subject Title	Credits		Total				
Code			Hrs. Max Marks		Marks			
				Mid Term	End Term			
MBCT104	Microbial Physiology and Cell Biology	4	48	30	70	100		

Course Content

	Section A					
Unit 1	No. of Lectures: 12	Weightage: 25%				
Overview of st	Overview of structure and functions of cellular organelles in Prokaryotes and Eukaryotes					
Molecular Orga	nization and functions of: Endoplasmic reticulu	m, Golgi complex, Lysosomes,				
Microbodies: Pe	roxisomes, Ribosomes, Mitochondria, Nucleus, Ch	hloroplast.				
Organization	of Cytoskeleton: Membrane Cytoskeleton inte	eractions, Microtubule and its				
dynamics, moto	or proteins, Microfilament and its functions, In	ntermediate filaments and their				
functions, Cell d	livision and overview of cell cycle.					
Bio-membrane	s: Structures and Transport process					
	_					

Unit 2No. of Lectures: 12Weightage: 25%Microbial growth: Definition, Mathematical expression of growth, Growth curve, Methods for
measurement of microbial growth, Effect of environment on microorganisms.

Sterilization: various sterilization methods, Microbial contamination control and sterility testing. Applications in biotechnology.

Section B

Unit 3No. of Lectures: 12Weightage: 25%Microbial metabolic diversity: Photosynthesis: Photosynthetic pigments, oxygenic & anoxygenicPhotosynthesis, Nitrogen fixation: Biological nitrogen fixation, Nitrogen fixation process,
Nitrogenase enzyme, Regulation of nitrogen fixation.

Methanogenisis, Acetogenisis & Microbial respiration: Bacterial anaerobic and Aerobic respirations, Methanogenisis, Acetogenisis.

Microbial diversity : Nutritional Diversity , Extremophiles

Unit 4No. of Lectures: 12Weightage: 25%Culture collection: Maintenance of cultures, Biochemical characterization. Antimicrobial agents:
Antibacterial, Antiviral, Antifungal agents, Mode of action and resistance to antibiotics

References:

Sr. No.	Name of Book	Authors
1	Molecular Biology of Cell:	B. Alberts et. al.
2	Molecular Biology of the Gene	J. D. Watson <i>et. Al</i> .
3	Genes XI	B. Lewin
4	Instant notes on Molecular Biology- 4 Ed.	Turner
5	Principles of Genetics	Snustard
6	Fundamental Bacterial Genetics	Nancy Trun & Janie Trempy

Semester-1 MBCP 105 Practicals

Teaching and Evaluation Scheme:

Subject	Subject	Credits		Practical				
Code	Title		Hrs/	Hrs/ Max Marks				
			week	Experiments	Spots	Viva	Journal	
				& writing				
MBCP	Practicals	8	16	120	40	20	20	200
105								

Course Content:

- 1. Good laboratory practices and management.
- 2. Introduction to Instruments that are routine used in the laboratory.
- 3. Basics of weights, measurements and preparation of standard solutions.
- 4. Isolation of DNA from Animal source.
- 5. Isolation of the DNA from a plant source.
- 6. Estimation of DNA by Diphenyl amine method.
- 7. Visualization of the DNA samples by Agarose gel electrophoresis.
- 8. Isolation of proteins from plant source.
- 9. Estimation of proteins by Brad Ford's method/ U.V. spectrophotometry method.
- 10. Thin layer chromatography of fatty acids/lipids
- 11. Identification of carbohydrates by ascending paper chromatography technique.
- 12. Identification of carbohydrates by radial or circular paper chromatography.
- 13.Separation of amino acids by Paper electrophoresis
- 14. Separation of proteins by SDSPAGE
- 15. Effect of hypertonic, hypotonic and isotonic environment of human RBC.
- 16. Isoelectric point determination of amino acid Glycine.
- 17.Protein estimation by Folin- Lowry's method.
- 18. Protein estimation by Biuret method.
- 19. Carbohydrate estimation by Anthrone method
- 20. Estimation of reducing sugar by DNSA method.
- 21. Isolation of casein from milk.
- 22. Isolation of lactose from milk.
- 23. Isolation of Urease enzyme from plant source.
- 24. Assay of Urease activity.
- 25.Enzyme Kinetics Studies (Amylase).
- 26. Determination of standard substrate curve.
- 27. Effect of substrate concentration on enzyme activity.
- 28.Effect of pH on enzyme activity.
- 29. Effect of Temperature on enzyme activity.
- 30. Effect of Incubation time on enzyme activity.
- 31. Microscopic examination of bacteria and yeast by different staining methods.
- 32. Monochrome staining
- 33.Negative staining
- 34.Gram's staining
- 35. Acid fast staining
- 36.Spore staining

37. Capsule staining

38. Isolation, cultivation & identification of molds

39. Preparation of sterile liquid and solid media for growth of microorganisms.

40. Isolation and maintenance of organisms from soil by plating, streaking and serial dilution methods, slant and stab culture.

41. Purification of cultures, maintenance and preservation of pure cultures.

42.Bacterial growth curve & factors affecting it.

43. Isolation and detection of Mitochondria from leaves.

44. Isolation and detection of Chloroplast from leaves.

45.Different stages of Mitosis and Meiosis.

References:

S.N.	Title	Author
1.	An introduction to Practical Biochemistry	David T.Plummer
2.	Biochemical Methods	S. Sadasivan & A. Manickam
3.	Practical Biotechnology	R.S.Guad, G. D. Gupta, S.B.Gokhale
4.	Methods In Enzymology	Shelby L Berger & Alan R. Kimmel
5.	Experimental Microbiology	R. J.Patel
6.	Laboratory exercises in Microbiology	Harley Prescot
7.	Laboratory manual in Biochemistry.	Jaynarayan

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester -2 MBCT 201- Microbial Diversity

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits	Theory			Total
Code			Hrs. Max Marks		Marks	
				Mid Term	End Term	
MBCT 201	Microbial Diversity	4	48	30	70	100

Course Content

Section A

Unit 1 No. of Lectures: 12 Weightage: 25% History and Scope of Microbiology: Prebiological evolution, proteinoids and protocells; Species concept, The five Kingdoms, Three domain concept of Carl Woese; Endosymbiont Theory, History and development of Microbiology. Contributions of Pioneers. Further developments and Scope. Microbial biodiversity: Species, Genomic and Ecologic diversity microorganisms. Distinguishing features between prokaryotes and eukaryotes. Prions. Extremophiles. Associations: Lichens, Mycorrhiza.

Systematics and Phylogeny – Classical and Basic concepts in Taxonomy and Phylogeny, Phenetic, and molecular characteristics used in Taxonomy; Molecular phylogeny and Phylogenetic analysis

Unit 2

Unit 3

No. of Lectures: 12

Microbial cultivation: Sterilization method. Cultivation techniques, preservation and maintenance of Microbial cultures. Microbial Growth.

Bacterial systematics: Bergey's Manual of Systematic Bacteriology. Characteristics, distribution, replication, classification and Economic Importance of: Proteobacteria, Firmicutes. Actinobacteria, Mycoplasma, Spirochetes, Rickettsiae,

Section B No. of Lectures: 12

Weightage: 25%

Weightage: 25%

Viruses: General characters, Structure and replication, nomenclature and classification of DNA and RNA viruses. Plant Viruses, Animal Viruses, Bacteriophages. Diagnosis and cultivation. Economic Importance.

Archaebacteria and Extremophiles. Characteristics, diversity, significance and potential applications of Archaebacteria, Alkalophiles and Acidophiles Halophiles and Barophile.

Unit 4No. of Lectures: 12Weightage: 25%Algae: Distribution, morphology, taxonomy and lifecycle. Economic Importance of algae.Fungi and Yeast: General characters, Distribution, Morphology, Structure, nutrition and life cycle,
Classification and Economic Importance. Yeast: genomics, diversity, economic application.Protozoa: General characters, Morphology, Structure, nutrition and life cycle, Classification,
Economic Importance

References:

Sr. No.	Name of Book	Authors
1	General Microbiology	R.Y. Stanier, John L. Ingraham and Mark L. Wheelis
2	Principles of Microbiology	Ronald M. Atlas, Me Graw Hill
3	Microbiology	Michael J. Pcleczar, Chan and Krieg, Mac Graw Hill.
4	Brocks Biology of	Michael T. Madigan, John M. Martinko. Jack Parker.

	Microorganisms,8th Ed.	
5	Microbiology Principle &	J.J. Black, John Wiley, Prentice Hall
	Applications	
6	An Introduction to Fungi	H.C. Dubey: Vikas Publishing House Pvt. Ltd.
7	Introductory Mycology	C.J. Alexopoules
8	Structure & reproduction of	F.E.Fristsch
	the Algae	

MBCT 202 - Bioprocess Technology

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits	Theory		Total	
Code			Hrs. Max Marks		Marks	
				Mid Term	End Term	
MBCT 202	Bioprocess Technology	4	48	30	70	100

Course Content

Section AUnit 1No. of Lectures: 12Weightage: 25%Introduction to Fermentation & Bioprocess Technology.Growth phases of microorganism, primary secondary metabolite. Effects of environmental factors
on growth. Growth kinetics: Microbial growth cycle and measurement of growth. Primary and

on growth. Growth kinetics: Microbial growth cycle and measurement of growth. Primary and secondary screening, Preservation of industrially important microorganisms. Strain improvement techniques. Fermentation substrates used in media formulation. Optimization of media. Inoculum development Scale up of bioprocesses.

Unit 2 No. of Lectures: 12 Weightage: 25% Elements of biochemical engineering, Fermenter and Bioreactor design; Solid state / Submerged cultivation; Batch, fed batch and continuous cultivation. Sterilization techniques for media, reactor and air. Agitation and aeration and mass transfer of oxygen in different types of Bioreactors.

Section B

Unit 3No. of Lectures: 12Weightage: 25%Measurement and Control of Process parameters in Fermenter.Automation: two position and proportionate control, biosensors, microprocessor based controlsystems. Cell separation and Cell disintegration techniques.

Unit 4No. of Lectures: 12Weightage: 25%Product enrichment and purification techniques. Enzyme technology: Use of immobilized enzymes
in bioreactor and its applications. Bioprocess economics.Use of immobilized enzymes

References:

S. N.	Name of Book	Authors
1	Principles of Fermentation Technology	A. Whitekar, P. F. Stanbury & S. J. Hall
2	Comprehensive Biotechnology	M. Moo-Young (Ed)
3	Methods in Industrial Microbiology:	G. Sikyta
4	Industrial Microbiology:	L. E. Casida
5	Biochemical Engineering Fundamentals	J. E. Bailey & D. F. Ollis
6	Microbial Technology	H .J. Peppler & D. Perlman (Ed)
7	Prescott & Dunn's Industrial Microbiology	G. Reed
8	Fermentation Technology	H A Modi
9	Industrial Microbiology	A H. Patel
10	Textbook of Biotechnology	W. Crueger and A. Crueger

11	Industrial Microbiology: An Introduction	M Waites, N Morgan, J Rockey and G
		Higton

Semester -2

MBCT 203- Recombinant DNA Technology

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits	Theory		Total	
Code			Hrs.	Max I	Marks	Marks
				Mid Term	End Term	
MBCT 203	Recombinant DNA	4	48	30	70	100
	Technology					

Course Content

Section A Unit 1 No. of Lectures: 12 Weightage: 25% Genetic Engineering, Chimera, Recombinant DNA, Recombinant DNA technology, Tools of r-DNA technology. Restriction endonucleases, Modification methylases and other enzymes to modify the DNA. Vectors – plasmids, bacteriophages, cosmids, phagemids, artificial chromosome vectors (YAC,

BAC), Animal virus derived vectors - SV40 and retroviral vectors, Vectors in yeast and cloning in Plants.

Unit 2

No. of Lectures: 12

Ires: 12Weightage: 25%enomic DNA libraries, Shot gun gene cloning, cDNA

Molecular cloning, – isolation of DNA, Genomic DNA libraries, Shot gun gene cloning, cDNA libraries, full length cDNA cloning.

Transformation of recombinant DNA, screening of recombinants, Southern, Northern and Western blotting.

Section B

Unit 3No. of Lectures: 12Weightage: 25%Polymerase chain reaction and its applications, Sequencing of DNA – Maxam and Gilberts method,
Sanger's method and other advances in sequencing, Overview of chemical synthesis of
oligonucleotides

Unit 4No. of Lectures: 12Weightage: 25%Mutation, Mutagens and Mutagenesis, techniques of in vitro mutagenesis, Site-directed mutagenesis.Applications of genetic engineering: Transgenic microbes; Production of recombinant pharmaceuticals

References:

S. N.	Name of Book	Authors
1	A text book of Biotechnology	R.C. Dubey
2	Genetic Engineering:	Smita Rastogi
	Suggested Reading	
1	Principles of Gene Manipulation	R.W.Old, Twyman M. & S.B.Primrose
2	Concepts In Biotechnology	Balasubramanian D et al
3	Genetic Engineering	Sandya Mitra

Kadi Sarva Vishwavidyalaya, Gandhinagar

CBCS Syllabus of M.Sc. Microbiology

4	Gene Biotechnology	S.N
---	--------------------	-----

I. Jogdand

Semester-2 MBCT204- Research Methodology and Technical Writing in Microbiology

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits	Theory		Total	
Code			Hrs.	Max I	Marks	Marks
				Mid Term	End Term	
MBCT	Research Methodology and	4	48	30	70	100
204	Technical Writing in					
	Microbiology					

Course Content

	Section A			
Unit 1	No. of Lectures: 12	Weightage: 25%		
Current trends in microbiological research. Introduction, Types of research.				
Research Process: Identification of the problem, Defining the problem, Literature search:				
Information sources				

Unit 2 No. of Lectures: 12 Weightage: 25% **Design of the experiment:** Variables in the experiments, evolution and application of research designs, observations, measurements, error measurements, error analysis. Progress of research: Evaluation of results, comparison with existing methodologies, validation of findings

Section **B**

No. of Lectures: 12 Weightage: 25%

Scientific communication : Types of reports; Scientific writing skills, Elements of a Scientific paper including Abstract, Introduction, Materials & Methods, Results, Discussion, References; Drafting titles and framing abstracts, Plagiarism.

Unit 4 No. of Lectures: 12 Technical Writing : Guidelines for effective writing, Paragraph writing, Writing style of application, Personal Resume, Official letter and Memo including Requests, Complains, asking

quotation etc.

References:

Unit 3

S. N.	Name of Book	Authors
1	Research Methodology	CR Kothari
2	Study and Communication	Stuart Johnson & Jon Scott
	Skills for the Biosciences	

1	8

Weightage: 25%

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits		Practical					
Code			Hrs/	Hrs/ Max Marks					
			week	Experiments Spots Viva Journal					
				& writing					
MBCP	Practicals	8	16	120	40	20	20	200	
205									

Course Content:

- 1) Isolation of Amylase producing microorganisms from soil.
- 2) Isolation of Protease producing microorganisms from soil.
- 3) Isolation of Lipase producing microorganisms from soil.
- 4) Screening of antibiotic producing microorganisms from soil.
- 5) Screening of organic acid producing microorganisms from soil.
- 6) Citric acid estimation by titrometric method.
- 7) Estimation of Reducing and Non-reducing sugar by Cole's method.
- 8) Fermentative production of Citric acid. -
- 9) Gel entrapment of yeast cells & determination of invertase activity of immobilized yeast cells.
- 10) Isolation of RNA from yeast
- 11) Estimation of RNA by orcinol method.
- 12) Isolation of DNA from E. coli.
- 13) Isolation of plasmid DNA from E. coli culture.
- 14) Restriction digestion of DNA.
- 15) Ligation of DNA fragments.
- 16) Visualization of DNA samples by Agarose gel electrophoresis.
- 17) Transformation and selection of recombinants.
- 18) To write a review article
- 19) How to include the references in a paper
- 20) How to write a Title and to find out keywords in a scientific communication
- 21) How to write an abstract
- 22) How to write a thesis
- 23) How to write an Introduction for an article
- 24) How to write a short note on any Topic
- 25) How to describe a Diagram on any Topic
- 26) How to point out the mistakes in the scientific communication
- 27) To search and collect Microbes occurring in nature and to examine the collected samples exhibiting viruses, bacteria and molds.
- 28) To Isolate microbes from Mangrove ecosystem
- 29) To Isolate thermophilic microbes from Gujarat sites
- 30) To Isolate halophilic and alkalophlic microbes from Gujarat sites

References:

S.N.	Title	Author
1	An introduction to Practical Biochemistry	David T.Plummer
2	Biochemical Methods	S. Sadasivan & A. Manickam
3	Practical Biotechnology	R.S.Guad, G. D. Gupta, S.B.Gokhale

4	Methods In Enzymology	Shelby L Berger & Alan R. Kimmel
5	Experimental Microbiology	R. J.Patel
6	Laboratory exercises in Microbiology	Harley Prescot
7	Laboratory manual in Biochemistry.	Jaynarayan

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester-3 MBCT 301- IMMUNOLOGY AND IMMUNOTECHNOLOGY

Teaching and Evaluation Scheme:

Subject Code	Subject Title Credits			Total		
			Hrs.	Max Marks		Marks
				Mid Term	End Term	
MBCT 301	Immunology and Immunotechnology		48	30	70	100

COURSE CONTENTS

Section A

Unit 1

Weightage:25%

Lectures:12

Adaptive immunity and innate immunity. Inflammation: Definition, Characteristics of inflammation, causes and mechanism of inflammation.

Cells of immune system: Hematopoiesis and structure and functions of immune cells, ADCC. **Organs of immune system:** Primary and secondary lymphoid organs.

Antigens and antibodies: Properties of immunogens, haptens, epitopes, structure and classes of immunoglobulins, monoclonal antibodies and abzymes.

Complement: Definition, Classical, alternative and lectin pathway of complement system. Complement deficiency diseases. **Cytokines:** properties, receptors, associated diseases, therapeutic applications.

Unit 2

Weightage:25%

Lectures:12

Antibody diversity: Antibody diversity definition, Organization of Ig genes, mechanism of gene rearrangement, generation of diversity; expression, synthesis and class switching.

Generation, activation and differentiation of B cells: B cell maturation, activation and proliferation. T-cell receptor, T-cell maturation, activation and differentiation: TCR- genetic organization and rearrangement of genes, TCR-complex, peptide binding, thymic selection, activation and differentiation of T cells.

Major histocompatibility complex: Definition, types, structure, organization of MHC genes and inheritance, Self MHC restriction.

Antigen processing and presentation: Cytosolic and endocytic pathway for antigen processing.

Section B Weightage:25%

Lectures:12

Unit 3 Weightage:25% Antigen and antibody interaction: Precipitation and agglutination reactions

Transplantation immunology: Transplantation definition, transplantation types, mechanism of graft rejection, HLA matching, Mixed lymphocyte reaction.

Hypersensitivity reactions: Classification and types of hypersensitivity reactions.

Vaccines: Definiton, Passive Immunization and Active immunization, Classification of vaccines, Herd immunity.

Tumor immunology: Definiton of benign and malignant tumor, oncogenes, Process of metastasis, Tumor Antigen (TATA, TSTA)

Weightage:25%

Lectures:12

Immune tolerance and autoimmunity: Establishment and failure of tolerance,

a. **Organ specific diseases** (Addison's disease, Autoimmune hemolytic anemia, Good pastures syndrome, Graves'disease, Hashimotosthyroditis, Insulin dependent diabetes mellitus, Myasthenia gravis, Glomerularnephritis and Pernicious anaemia)

b. Systemic diseases: Multiple sclerosis, Rheumatoid arthritis, Systemic lupus erythramatosis. **Immunodeficiency diseases.** (a). SCID, (b). WAS (c). Di George Syndrome, (d). Ataxia telengiectasia, (e). Chediak Higashi Syndrome, (f). Chronic granulamatous diseases.

REFERENCES:

Unit 4

Essential Immunology	Ivan Roitt
Kuby's Immunology:	R.A.Goldsby, T.J.Kindt and B.A.Osborne
Immunology:	I.Roitt, Brostoff, Mole
Introductory Immunology:	How Davies
Immunology Introductory Text Book	Shetty Nandini

22

MBCT: 302 - ENVIRONMENTAL MICROBIOLOGY

Teaching And Evaluation Scheme:

Subject	Subject Title	Credits		Theory			
Code			Hrs.	Hrs. Max Marks			
				Mid Term	End Term		
MBCT 302	Environmental Microbiology	4	48	30	70	100	

COURSE CONTENTS

Unit 1

Section A

Weightage:25%

Environmental issues: Types of pollution and its measurement. Air pollution: Types of air pollutants, Effects of air pollution and control by physical and biological methods Climate change: Air pollution and its role in climate change. Introduction to

Ecological foot print, Carbon credit Introduction to Kyoto Protocol, Introduction to Role of United Nations Framework Convention on Climate Change (UNFCCC). **Microbial indicators:** WHO criteria for microbial indicators, Examples of microbial indicators and

enumeration of microbial indicators

Unit 2: Weightage:25% Weste water treatment: Introduction to waste water treatment

Waste water treatment: Introduction to waste water treatment.

Preliminary, Primary, Secondary: Introduction to aerobic and anaerobic treatment system Difference between aerobic and anaerobic waste water treatment,

Aerobic and anaerobic waste water treatment systems.

Tertiary treatment systems: Nitrogen removal, Phosphorus removal, removal of microbes.

Section B

Lectures:12

Unit 3 Weightage:25%

Biofilms: Definition, Stage of biofilim development, Microbes involved in Biofilm, Problems related to biofilm formation its control method.

Microbiology of degradation of Xenobiotic in environment: Degradation of simple aliphatic, aromatic, polycyclic aromatic hydrocarbons, halogenated hydrocarbons, Surfactants, azo dyes, Insecticide: DDT, Herbicide: 2,4D.

Degradative plasmids: Plasmids involved in degradation of Toluene, 2,4-D. **Superbug** : Discovery of superbug and its role

Unit 4Weightage:25%Lectures:12Bioremediation of solid waste: Principles of Bioremediation, Strategies of bioremediation: In situ
and ex situ bioremediation technologies. Bioremediation of metals, Phytoremediation. Composting,
Vermicomposting.

REFERENCES:

Waste Water Treatment for Pollution Control:	Arceivala.
Environmental Microbiology:	R. M. Maier, I. L. Pepper & G. P. Gerba
Comprehensive Biotechnology, Vol. 4	M. Moo-Young (Ed)
Environmental Microbiology and Biotechnology	Singer Samuel

Lectures:12

Lectures:12

cholas P. Cheremisinoff,
areth M. Evans & Judith C. Furlong
N.Jogdand
C.Bhatia
.H.Fulekar
adipta K Mohaptra
las and Bartha
artin Alexandar

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester-3 **MBCT-303: INDUSTRIAL MICROBIOLOGY**

Teaching And Evaluation Scheme:

Subject	Subject Title	Credits		Theory		Total
Code			Hrs.	Max Marks		Marks
				Mid Term	End Term	
MBCT-303	Industrial Microbiology	4	48	30	70	100

COURSE CONTENT

Unit 1 Weightage:25% Lectures:12 General concepts of Industrial Microbiology: Principles of exploitation of microbial biodiversity **Microbial production of:** Enzymes: Proteases, Amylases; Vitamins: Vitamin B₁₂, Vitamin B₂; Amino acids: Glutamic acid, Lysine.

Section A

Unit 2

Unit 3

Weightage:25%

Microbial production of: Antibiotics: Penicillin, Streptomycin; Organic acids: Citric acid, acetic acid, Ethanol (beer, wine, sake and brief overview of other distilled alcoholic beverages). Alkaloids: Production of Ergot Alkaloids and Microbial Transformations of Steroids.

Section **B**

Lectures:12

Lectures:12

Weightage:25% Industrial applications of Algae: Brief specifications of Algal classification on the basis of size, pigments and polysaccharides, Techniques of mass culture of Algae, Application of Macro and Micro Algae as a Food and feed supplement, as a biofertilizer, in cosmetic and drug industry, as a biofuel etc.

Production of Biofertilizers: Symbiotic (Rhizobium, Bradyrhizobium, Acetobacter, Frankia, BGA) and Non-symbiotic N_2 fixing biofertilizers (*Azotobacter*), Phosphate solubilizing biofertilizers (Bacteria, Fungi and VAM) and Potassium fixing biofertilizers

Unit 4

Weightage:25%

Lectures:12

Production of Biopesticides (Bacillus, Metarhizium and Baculoviruses) and Biopreservatives (Nisin).

Biopolymers: Microbial polysaccharides: Overview of all microbial polysaccharides and detailed production of Xanthan gum and Dextran; **Biopolyesters** (polyhydroxyalkanoates and polylactate). **Bioconversions**: Biomining and bioleaching of ores, Biological fuel generation (Alcohols, Alkanes, Hydrogen and Methane), Microbial Enhanced Oil Recovery process.

REFERENCES:

S. N.	Name of Book	Authors
1	Comprehensive Biotechnology	Murray Moo-Young
2	Microbial Technology	H. J. Peppler& D. Perlman (Ed)
3	Microbial Biotechnology	Alexander N. Glazer & Hiroshi Nikaido (Ed.)

	CDCD Dyllabab 01	Miller Millerobiology
4	The Desk Encyclopedia of Microbiology	M. Schaechter (ed.)
5	Food Microbiology	Frazier William C and Westhoff Dennis C
6	Text Book of Industrial Microbiology	W Creuger& A Creuger
7	Industrial Microbiology	A. H. Patel
8	Industrial Microbiology: An Introduction	M. J. Waites, N. L. Morgan, J. S. Rockey, G.
		Higton
9	Biotechnology	H.J Rehm& G.I Reed
10	Fermentation Technology Volume 2	H. A Modi

MBCT-304 PHARMACEUTICAL TECHNOLOGY

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits		Theory		
Code			Hrs.	Hrs. Max Marks		Marks
				Mid Term	End	
					Term	
MBCT –	Pharmaceutical Technology	4	48	30	70	100
304						

COURSE CONTENT

	Section A				
Unit 1	Weightage:25%	Lectures:12			
Introduction to pharmaceutical	microbiology, Biopharmaceuticals	and introduction to animal, plant			
and microbial based pharmaceu	and microbial based pharmaceutical products				
Microbiological aspects in pl	harmaceutical microbiology: Ste	erility testing, Autoclave and its			
validation, In vitro and in viv	validation, In vitro and in vivo testing for pyrogens and endotoxins, Microbiological assay of				
antibiotics, Water analysis, B	ioburden determination, Clean	Rooms and Environmental			
monitoring.					

Unit 2

Weightage:25%

Concept and approaches for gene therapy, ex vivo and in vivo gene therapy, Potential target diseases for gene therapy (inherited disorders and cancer) Antigen and antisense therapy Vaccine: genetically improved vaccines, synthetic peptide based vaccines, nucleic acid vaccines Xenotransplantation in pharmaceutical biotechnology.

Section B

Unit 3 Weightage:25% Lectures:12 Dosage forms, Formulations and delivery routes for Biopharmaceutical: Oral delivery systems, pulmonary delivery, Nasal, Trans mucosal and transdermal delivery systems, Pharmacogenetics and its impact on drug therapy

Unit 4

Weightage:25%

Lectures:12

Lectures:12

Introduction to Different Pharmacopoeia, GMP Guidelines for manufacturing facilities, Regulatory market Inspections and their requirements, Quality Control analysis, QA and Documentation, SOP, Market complain analysis. USFDA, WHO

Sr. No.	Name of Book	Authors
1	Hugo and Russel's Pharmaceutical Microbiology:	Hugo and Russel's
2	Biopharmaceuticals Biochemistry and Biotechnology	Gary Walsh
3	Pharmaceutical Biotechnology: Drug Discovery & Clinical Applications:	O. Kayser& R.H. Muller
4	Biopharmaceuticals:	Jogdand, S.N
5	Molecular Biotechnology Therapeutic applications and Strategies	M. Sunil and P.D Salil
6	Pharmaceutical Biotechnology	S. P.Vyas and D.V. Kohli
7	Comprehensive Biotechnology	K G Ramawat&ShailyGoyal

REFERENCES:

ſ	0	Pharmaceutical	Biotechnology	Fundamentals	&	DJ	Crommelin	RD
	0	Applications				Sindle	er&Meibohm	
	9	Medical Biotechr	nology			P. Na	llari& V V Rao	

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester-3 MBCP 305 PRACTICALS

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits	Practic	Practical				Total
Code			Hrs/	Hrs/ Max Marks			Marks	
			week	Experiments & writing	Spots	Viva	Journal	
MBCP 305	Practicals	8	16	120	40	20	20	200

List of experiments: Experiments correspond to the theory papers in the current semester

- 1. To Perform Sandwich ELISA test
- 2. To Perform VDRL test for syphilis
- 3. To study Ag-Ab interaction by Immunoelectrophoresis.
- 4. To study Antigen-antibody interaction by using Oucterlony Double Diffusion (ODD) technique.
- 5. Bacteriological examination of water particularly for pathogenic microbes
- 6. Isolation of Coliphages from raw sewage
- 7. Detection of Coliform in water by membrane filter method
- 8. Determination of Chemical Oxygen demand of water
- 9. Determination of Dissolved Oxygen of Water
- 10. Determination of Biochemical Oxygen Demand of Water
- 11. Measurement of Total Solids, Suspended Solids and Dissolved Solids in a given sample of Water and Waste Water
- 12. Measurement of Acidity in given Water Sample
- 13. Measurement of Alkalinity of the given Water Sample
- 14. Determination of the Hardness of Water
- 15. Measurement of Sulfate in Water Sample
- 16. Determination of Chlorides concentration (Mohr's method)
- 17. Determination of Orthophosphate
- 18. Isolation of free living nitrogen fixing bacteria from soil.
- 19. Isolation of symbiotic nitrogen fixing bacteria from root nodules of leguminous plant.
- 20. Isolation of Phosphate Solubilizing Microorganisms from soil.
- 21. Isolation of Potassium Solubilizing Microorganisms from soil.
- 22. Estimation of alcohol by potassium dichromate method.
- 23. Fermentative production of alcohol by yeast.
- 24. Fermentative production of lactic acid
- 25. Fermentative production of protease
- 26. Isolation of Exopolysacharide producing Microorganisms from Citrus Canker
- 27. Mushroom spawn production technology
- 28. Sterility testing of paranteral products
- 29. Microbial limit test for oral dosage (capsules, tablet)
- 30. Enumeration of microbial load in class A and class B area by passive air sampling (settle plate method)
- 31. Analysis of microbial load in water. (purified water, WFI)
- 32. Tests for nonsterile pharmaceutical products.
- 33. Antibiotic potency testing.

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology 34. Bioburden Estimation of medical devices.

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester-3 MBET 306A ELEMENTS OF BIOSTATISTICS

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits		Theory		Total	
Code			Hrs.	Hrs. Max Marks		Marks	
				Mid Term	End Term		
MBET 306A	Elements of Biostatistics	2	24	15	35	50	

COURSE CONTENT

Weightage: 50%

Lectures:12

Biostatistics: Definition, branches and Scope of Biostatistics, Types of Variable and Measurement scale of Variable, Sample and statistic vs. Population and parameter.

Sampling: Rules for sample collection, Sampling error and Sampling techniques.

Analysis of data: Measures of central tendency – Mean (arithmetic, harmonic and geometric), Median and Mode.

Measures of dispersion (Standard deviation, Variance and coefficient of variance) and Standard Error and its significance.

Gaussian's Normal distribution

Unit 2

Unit 1

Weightage:50%

Lectures:12

Inferential statistics: Basic idea of significance test, Statistical hypothesis, types of errors, level of significance.

Parametric and Nonparametric tests: Paired and Unpaired Student's t test and one way ANOVA as a parametric tests, Chi-square test as a Nonparametric test.

Measures of Relationship: Karl Pearson's Correlation coefficient and Simple linear regression. **Data Analysis using Microsoft office Excel**

REFERENCES

S. N.	Name of Book	Authors
1	Biostatistical Analysis	Jerrold H. Zar
2	Basic Biostatistics: Statistics for Public health Practice	B. Burt Gerstman
3	An Introduction To Biostatistics	P.S.S. Sundar Rao, Richard J.
4	Research Methodology: Methods and Techniques	C. R. Kothari
5	Comprehensive Textbook of Biostatistics & Research	S. Kartikeyan, R.M. Chaturvedi,
	Methodology	R.M. Bhosale
6	Methods In Biostatistics For Medical Students And	B. K. Mahajan
	Research Workers	
7	Elements of Biostatistics	S. Prasad

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester-3 MBET: 306B GENOMICS

Teaching and Evaluation Scheme:

Subject Code	Subject Title	Credits		Theory		
			Hrs. Max Marks		Marks	
				Mid Term	End Term	
MBET: 306B	Genomics	2	24	15	35	50

COURSE CONTENT

Unit 1Weightage: 50 %No. of Lectures: 12Genomics: Concepts and Applications - Microbial genome and genome epidemiology.Organization of eukaryotic genomes. Repetitive and transposable genetic elements. Telomereregions. Structural genomics, Functional genomics and comparative genomics.Whole genome analysis - Preparation of genome libraries (cosmid, BAC), shotgun sequencing,

conventional and automated sequencing methods, Next generation sequencing methods. Genome mapping and DNA fingerprinting. Gene knockout, genome-wide mutagenesis.

Unit 2Weightage: 50 %No. of Lectures: 12Transcriptomics and Microarray - Introduction to transcriptomics and Global gene expressionprofiling. RNA and DNA Microarray preparation, working and analysis. DNA Chips, SNPs EST,SAGE.

Proteomics - concepts and applications of Expressional Proteomics, Functional Proteomics, Structural Proteomics.

Protein separation techniques: Affinity purification of proteins and TAP tag, 2D Gel electrophoresis, ITRAQ, Isoelectric Focusing (IEF).

REFERENCE:

S. N.	Name of Book	Authors
1	Biochemistry	J. M. Berg, J. L. Tymoczko, L. Stryer
2	Principles & Techniques of Biochemistry & Mol.	Keith Wilson & John Walker
	Biology	
3	The Cell: A Molecular Approach	G.M.Cooper&R.E.Hausman
4	Gene IX	Lewin
5	Molecular Biology of the Gene	Watson et al.
6	Protein Structure Prediction: Methods and	Webster, David
	Protocols	
7	Bioinformatics: A Practical guide to the Analysis of	A. D. Bzxevanis and B. F. F. Onellette
	genes and Proteins	
8	Bioinformatics Methods and protocols:	S. Misenes and S. A. Krawetz (Eds)
	Methods molecular biology Vol. 132	
9	Biopharmaceuticals Biochemistry and	G. Walsh
	Biotechnology	

MBCT 401- FOOD AND DAIRY MICROBIOLOGY

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits		Theory		Total
Code			Hrs.	Irs. Max Marks		Marks
				Mid Term	End Term	
MBCT 401	Food and Dairy Microbiology	4	48	30	70	100
COURSE CONTENT						
Section A						

Unit 1 Weightage:25% Lectures:12 Factors affecting the growth and survival of microorganisms in Food: Intrinsic Factors (Moisture content, pH, Nutrient Content, Biological Structure, Redox potential, Antimicrobials, Competitive Microflora) and Extrinsic Factors (Types of Packaging/ Atmospheres, Time, Temperature, Storage and Holding Conditions). Natural Sources of microbial Contamination of Food: (Air, Water, Soil, Sewage, Surface of plants and fruits, Surface of Animals, Improper handling and processing).

Food preservation by Asepsis, removal of microbes, Maintenance of anaerobic conditions, High and Low Temperature, Drying, Food additives and radiation.

Microorganisms as food: single cell protein, yeast, algae and fungal biomass production

Weightage:25%

Lectures:12

Fermented Foods: Fermented Milk Products: Cheese, Curd, Yoghurt, Acidophilus Buttermilk, Bulgarian Buttermilk, Kefir, Kumiss, Skyr).

Fermented Vegetable Products: Sauerkaraut, Kimchi, Cucumber and Olive pickles.

Fermented Fruit Products: Wine, Vinegar, Coffee, Citron, Cacao.

Fermented Cereal grain products: bread, beer, sake, and Oriental Fermented foods (Soy Sauce, Tofu, Tempeh, Ang-Khak, Idli, miso, Minchin).

Fermented Meat and Fish products (Salami, Iao- Chao)

Section B

Lectures:12

Weightage:25% Unit 3 Microbial spoilage of food (Cereals and cereal products; Vegetable and Fruits, Meat and Meat Products, Poultry and eggs, Milk and milk products, Fish and seafoods, Canned foods, Sugars and sugar products), Pickles.

Unit 4

Unit 2

Weightage:25%

Lectures:12

Indicator microorganisms and Quality criteria of different foods.

Detection, Identification and Analysis of Foodborne Pathogens: Enumeration procedures, Pure culture methods, Microscopic examination, Immunological detection and Electrical methods. Food Sanitation, control and Inspection: Indian and International food safety laws and standards (Codex Alimentarius, FDA, HACCP- System, FSSAI, Agmark, ISO and BIS certification)

REFERENCES:

Name of Book	Authors
Food Microbiology	Frazier William C and Westhoff Dennis C
Food Microbiology: An Introduction	Adam M. and Dick M.
Fundamental Food Microbiology	Bibek Ray
Microbiology and Technology of Fermented Foods	Robert W. Hutkins
Modern Food Microbiology	Jay M. James
Industrial Microbiology: An Introduction	M. J. Waites, N. L. Morgan, J. S. Rockey,
	G. Higton
Comprehensive Biotechnology	Murray Moo-Young
Microbial Technology	H. J. Peppler& D. Perlman
Dairy Microbiology	H. A. Modi
Introductory Food Microbiology	H. A. Modi
Fermented Food Microbiology	H. A. Modi
Microbial spoilage of Food	H. A. Modi

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester 4 MBCT: 402 MEDICAL MICROBIOLOGY

Teaching and Evaluation Scheme:

Subject	Subject Title	Theory			Total	
Code		Credits	ts Hrs. Max Marks		Marks	
				Mid Term	End Term	
MBCT 402	Medical Microbiology	4	48	30	70	100

SectionA

Unit 1Weightage:25%Lectures:12Basics in Medical microbiology: Terminology related to medical microbiology. Types of Infections.Epidemology of diseases, Collection of sample - Collection, transport, preservation and preliminary
processing of clinical samples from different anatomical sites. Biomedical waste management.

Unit 2 Weightage:25% Lectures:12 Bacteriology: Characteristics, classification, pathogenesis, pathology, diagnosis, treatment, prevention and control of diseases caused by (1) Gram positive: *Staphylococci, Streptococci, Bacillus, Clostridium, Corynebacterium, Mycobacteria.* (2) Gram negative: *Escherichia, Salmonella, Shigella, Klebsiella, Proteus, Vibrio, Pseudomonas, Spirochaetes, Rickettsia.* Section B

Unit 3Weightage:25%Lectures:12Virology: Structure, multiplication, and medical importance of DNA viruses - Pox, Herpes, HepatitisB, Adeno. RNA virus: Poliovirus, Influenza, Rubella, Hepatitis A, and HIV virus.Protozoa: Trypansomiasis and Amoebiasis

Unit 4	Weightage:25% Lect					
Mycology: Human	mycotic infections caused by Der	rmatophytes, Histoplasma, Cryptococcus,				
Candida. Oppurtunistic infection caused by Aspergillus, Mucor, PencilliumMycotoxins.						

REFERENCES:	
Ananthanarayan and Panikers	R. Ananthanarayan and CK Jayaram Paniker
Textbook of Microbiology	
Mechanism of Microbial Diseases	Chaechter M. Medoff G. and Eisenstein BC.
Practical Medical Microbiology,	Collee, JG. Duguid JP, Fraser AG, Marimon BP.
Medical Microbiology. 14th edition.	David Greenwood, Richard CD, Slack, John F Peutherer
Pharmaceutical Microbiology	Hugo WB and Russell AD.
Clinical Microbiology	Joan Stokes E, Ridgway GL and Wren MWD
Microbiology: Fundamentals &	Ronald M. Atlas.
Applications.	

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester-4 MBCP 403 PRACTICALS

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits		Practical			Total	
Code			Hrs/	Hrs/ Max Marks		Marks		
			week	Experiments	Spots	Viva	Journal	
				& writing				
MBCP	Practicals	4	8	60	20	10	10	100
403								

List of Experiments:

Experiments related to the Theory papers offered in the current semester.

- 1. Qualitative Examination of milk by methylene blue reduction test (MBRT).
- 2. Qualitative Examination of milk by resazurin test.
- 3. Metachromatic granules staining from curd.
- 4. Fermentative production of Cheese.
- 5. Fermentative production of Yogurt
- 6. Quantitative Examination of various food samples by total viable count (TVC).
- 7. Quantitative Examination of various food samples by MPN
- 8. Biochemical test: IMViC, TSI,Urease, Catalase, Oxidase.
- 9. Isolation and identification of pathogenic organisms from any two biological samples
- 10. Identification of microbes by biochemical test Kits
- 11. Antibiotic sensitivity tests

MBDI-404- DISSERTATION/ INDUSTRIAL TRAINING

Teaching and Evaluation Scheme:

Subject Code	Subject Title	Credits	Theory			Total Marks
			Hrs. Max Marks			
				Mid Term	End Term	
MBDI 404	DISSERTATION/	12			300	300
	INDUSTRIAL					
	TRAINING					

- Project work and Dissertation must be based on applied aspects of Microbiology, Biotechnology, Pharmaceuticals, Agriculture, Dairy & Food Processing, Environmental Issues and Bioinformatics.
- Semester 4 students will be at Industry / Research Institution / Department during entire term for Project Work and Dissertation. The Students have to devote 3 days, 8 hours per day at the work place that may be an Institute, Industry, Department and Hospital Laboratory.
- The Students will have to undergo continuous interaction and one evaluation of progress by a team of Departmental experts. A student who has undergone such evaluations only will be entitled to present his complete project work to the University for Exam.
- The University End Term Practical Examination will be carrying 300 marks divided as underneath and shall be conducted by One external expert along with an Internal expert:
- Thesis Write up : 100 marks
- Thesis Content : 100 marks
- Thesis Presentation : 50 marks
- Viva Voce : 50 marks
- Area of Final Project can be any of the following :
- o Biopharmaceuticals,
- o Biofertilizers,
- \circ Biopesticides
- o Enzymes
- o Biofuels,
- Diagnostic Procedures
- Dairy & Food Processing,
- Tissue Culture
- \circ Bioremediation,
- \circ Bioleaching,
- o Pollution Abatement,
- Extremophiles
- o Biological Effluent Treatment
- Environmental Issues and
- o Bioinformatics.

MBET 405A BIOINFORMATICS

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits		Theory		
Code			Hrs.	Hrs. Max Marks		
				Mid Term	End Term	
MBET 405A	Bioinformatics	2	24	15	35	50
10011		Section	n A			

Unit 1

Weightage: 50%

Lectures: 12

Origin, history, aims and scope of bioinformatics, branches of bioinformatics;

Gene structure and information content: Nucleotides and theirs orientation, Promoter sequences, Open reading frames, Introns and Exons, Structural features of RNA: Primary, Secondary, Tertiary Structures.

Protein structure: Primary, secondary and tertiary. Nature of chemical bonds

Unit 2Weightage:50%Lectures:12Biological Data Acquisition: Biological Data Acquisition by Sequencing, PCR, Blotting,
Microarrays, Restriction digestion, Cloning, NGS.Introduction to Databases (NCBI, PDB and
CATH).

Similarity Searches, Database searches: BLAST, FASTA, **Visualisation tools**: 3D structure viewers (Rasmol), Introduction to Molecular Docking.

REFERENCES:

S.N.	Name of Book	Authors
1	Genetic Engineering	SmitaRastogi
2	Biotechnology	U. Satyanarayana
3	Developing Bioinformatics Computer Skills	C. Gibas and P. Jamback.
4	Bioinformatics A machine learning approach	P. Baldi& S. Brunak
5	Bioinformatics: A Practical guide to the analysis of	A. D. Bzxevanis and B. F. F.
	LIENES and Proteins	Onellette

Kadi Sarva Vishwavidyalaya, Gandhinagar CBCS Syllabus of M.Sc. Microbiology Semester-4 MBET 405B PROTEOMICS

Teaching and Evaluation Scheme:

Subject	Subject Title	Credits	Theor	Theory		
Code			Hrs.	Hrs. Max Marks		
				Mid Term	End Term	
MBET 405B	Proteomics	2	24	15	35	50

COURSE CONTENT

Unit 1Weightage: 50 %No. of Lectures: 12Protein-Protein interactions-Yeast-two hybrid Assays, Phage display. Fluorescent tagging andFRET microscopy. Protein crystallization: technique and application.Mass spectrometry in proteomics – Principle, techniques, data analysis and applications (MALDI-TOF, LC-MS, MS/MS).Peptide sequencing. Protein Microarray

Unit 2

Weightage: 50 %

No. of Lectures: 12

Applications of Genomics and Proteomics: In basic research and medical genetics: Metagenomics, Pharmacogenomics: Overview, concept and application of Individualized Therapy; RNAi: Targeted Medicine and gene silencing. Peptidomics/ Drug discovery, Toxicoproteomics, Biomarkers in disease diagnosis, Identification and characterization of novel proteins.

Genomics and proteome data analysis: Public domain databases for NA and proteins (EMBL, GeneBank), Similarity, homology, sequences alignments and genome analysis program (BLAST, FASTA, GCC, ClustalW etc.). ORFs, genes annotation, conserved protein motifs related structure / function analysis (PROSITE, PFAM, Profile Scan, PDB).

REFERENCES:

S. N.	Name of Book	Authors
1	Biochemistry	J. M. Berg, J. L. Tymoczko, L. Stryer
2	Principles and Techniques of Biochemistry & Mol.	Keith Wilson & John Walker
	Biology	
3	The Cell: A Molecular Approach	G.M.Cooper&R.E.Hausman
4	Gene IX	Lewin
5	Molecular Biology of the Gene	Watson et al.
6	Protein Structure Prediction: Methods and	Webster, David
	Protocols	
7	Bioinformatics: A Practical guide to the Analysis	A. D. Bzxevanis and B. F. F. Onellette
	of genes and Proteins	
8	Bioinformatics Methods and protocols:	S. Misenes and S. A. Krawetz (Eds)
	Methods molecular biology Vol. 132	
9	Biopharmaceuticals Biochemistry and	G. Walsh
	Biotechnology	

INSTRUCTION STRATEGIES

- 1. Interactions with the students to understand the level of students
- 2. Explaining & Discussing the major terminologies related to Proteomics
- 3. Teaching the topics included in the syllabus with the help of teaching aids like OHP, LCD (Power point presentation), Notes, Question Banks, References and Reprints / Copy of Articles, Models, Diagrams

TEACHING AND EXAMINATION

UNIT	Examination Scheme %weightage	Teaching Scheme No. of Lectures
Unit 1	50	12
Unit 2	50	12
Total	100	24

KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR Department of Microbiology Scheme for Core Theory End Term Examination

Time: 3 hrs

Date: SECTION-A

Maximum marks: 70

Q.1 Answer all questions. Each question carries 1 mark (10X1=10 Marks) (MCQ. Out of these 5 will be from Unit 1 and 5 will be from Unit 2)

1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

Q. 2 Answer all questions. Each question carries 5 marks (2X5=10M)

I) 5M Question (Unit1) or II) 5 M Question (Unit1)

III) 5M Question (Unit2)orIV) 5 M Question (Unit2)

Q. 3 Answer any 5 questions. Each question carries 3 marks (5X3=15 Marks) (4 questions from Unit 1 and 4 from Unit 2)

a)
b)
c)
d)
e)
f)
g)
h)

P.T.O

Q.4 Answer all questions. Each question carries 1 mark (10X1=10 Marks) (MCQ. Out of these 5 will be from Unit 3 and 5 will be from Unit 4)

1) 2) 3) 4) 5) 6) 7) 8)

9)

10)

Q. 5 Answer all questions. Each question carries 5 marks (2X5=10M)

I) 5M Question (Unit3) or
II) 5 M Question (Unit3)
III) 5M Question (Unit4) or

IV) 5 M Question (Unit4)

Q.6 Answer any 5 questions. Each question carries 3 marks (5X3=15 Marks) (4 questions from Unit 3 and 4 questions from Unit 4)

a) b) c) d) e) f) g) h)

KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR Department of Microbiology Duestion Paper Scheme for Elective Theory End Term Examination

Question Paper Scheme for Elective Theory End Term Examination

Date:

Q.1 Answer all questions. Each question carries 1 mark (10X1=10 Marks)
(MCQ. Out of these 5 will be from Unit 1 and 5 will be from Unit 2)

1) 2) 3) 4) 5) 6) 7) 8) 9)

10)

Time: 3 hrs

Q. 2 Answer all questions. Each question carries 5 marks (2X5=10M)

I) 5M Question (Unit1) or II) 5 M Question (Unit2)

III) 5M Question (Unit1) or IV) 5 M Question (Unit2)

Q. 3 Answer any 5 questions. Each question carries 3 marks (5X3=15 Marks) (4 questions from Unit 1 and 4 from Unit 2)

a) b) c) d) e) f) g) h)

Maximum marks: 35